МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

МБОУ "СОШ с. Анастасьино Калининского района"

PACCMOTPEHO

Зам. директора по УВР

Бондаренко Е.А. Протокол №2 от « 4 » 09. 2023 г. **УТВЕРЖДЕНО**

ио директора

Погорелова А.А Приказ №121 от «19 » 09. 2023 г.

Программа внеурочной деятельности по физике 8 класс

Южиковой Т.А.

Срок реализации: 1 год

с. Анастасьино 2023 г.

Пояснительная записка

Рабочая программа разработана в соответствии с нормами Федерального закона от 29.12.2012 № 273-ФЗ "Об образовании в Российской Федерации" (далее — Федеральный закон "Об образовании в Российской Федерации"), положениями Трудового кодекса РФ (далее — ТК РФ). Программа разработана на основе требований ФГОС СОО и предполагает формирование у обучающихся целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики; развитие интереса к физике и решению физических задач и формирование представлений о постановке, классификации, приемах и методах решения школьных физических задач. Рабочая программа внеурочной деятельности по физике в 8 классе разработана в соответствии с:

1. Нормативными правовыми документами федерального уровня: Федеральным законом "Об образовании в Российской Федерации" (п. 22 ст. 2; ч. 1, 5 ст. 12; ч. 7 ст. 28; ст. 30; п. 5 ч. 3 ст. 47; п. 1 ч. 1 ст. 48); Федеральным государственным образовательным стандартом основного общего образования, утв. приказом Минобрнауки России от 17.12.2010 № 1897 (п. 18.2.2); 2. Авторской программой (Е.М. Гутник, А.В. Перышкин Программы для общеобразовательных учреждений. Физика. Астрономия.7-11 кл./ сост. В.А. Коровин,

Общая характеристика.

В.А. Орлов. - М.: Дрофа, 2010. — 334с.);

Изучение физики в образовательных учреждениях основного общего образования направлено на достижение следующих целей:

- освоение знаний о механических, тепловых, электромагнитных и квантовых явлениях; величинах, характеризующих эти явления; законах, которым они подчиняются; методах научного познания природы и формирование на этой основе представлений о физической картине мира;
- овладение умениями проводить наблюдения природных явлений, описывать и обобщать результаты наблюдений, использовать простые измерительные приборы для изучения физических явлений; представлять результаты наблюдений или измерений с помощью таблиц, графиков и выявлять на этой основе эмпирические зависимости; применять полученные знания для объяснения разнообразных природных явлений и процессов, принципов действия важнейших технических устройств, для решения физических задач;
- развитие познавательных интересов, интеллектуальных и творческих способностей, самостоятельности в приобретении новых знаний при решении физических задач и выполнении экспериментальных исследований с использованием информационных технологий;
- воспитание убежденности в возможности познания природы, в необходимости разумного использования достижений науки и технологий для дальнейшего развития человеческого общества; уважения к творцам науки и техники; отношения к физике как к элементу общечеловеческой культуры;

применение полученных знаний и умений для решения практических задач повседневной жизни, обеспечения безопасности своей жизни, рационального природопользования и охраны окружающей среды. Актуальность программы определена тем, что в Калининградской области «особенно востребованы такие профессии, как Физик, Физик – инженер, Физик-преподаватель, Физик-исследователь», а также тем, что «сама дисциплина органично входит в результатов своей деятельности, умениями предвидеть возможные результаты своих действий;

2. Понимание различий между исходными фактами и гипотезами для их объяснения, теоретическими моделями и реальными объектами, овладение универсальными учебными действиями на примерах гипотез для объяснения известных фактов и экспериментальной

проверки выдвигаемых гипотез, разработки теоретических моделей процессов или явлений;

- 3. Формирование умений воспринимать, перерабатывать и предъявлять информацию в словесной, образной, символической формах, анализировать и перерабатывать полученную информацию в соответствии с поставленными задачами, выделять основное содержание прочитанного текста, находить в нем ответы на поставленные вопросы и излагать его;
- 4. Приобретение опыта самостоятельного поиска, анализа и отбора информации с использованием различных источников и новых информационных технологий для решения познавательных задач;
- 5. Развитие монологической и диалогической речи, умения выражать свои мысли и способности выслушивать собеседника, понимать его точку зрения, признавать право другого человека на иное мнение;
- 6. Освоение приемов действий в нестандартных ситуациях, овладение эвристическими методами решения проблем;
- 7. Формирование умений работать в группе с выполнением различных социальных ролей, представлять и отстаивать свои взгляды и убеждения, вести дискуссию.

Ценностные ориентиры.

Предметными результатами обучения физике в основной школе являются:

- 1. Формирование представлений о закономерной связи и познаваемости явлений природы, об объективности научного знания; о системообразующей роли физики для развития других естественных наук, техники и технологий; научного мировоззрения как результата изучения основ строения материи и фундаментальных законов физики;
- 2. Знания о природе важнейших физических явлений окружающего мира и понимание смысла физических законов, раскрывающих связь изученных явлений;
- 3. Формирование первоначальных представлений о физической сущности явлений природы (механических, тепловых, электромагнитных и квантовых), видах материи (вещество и поле), движении как способе существования материи; усвоение основных идей механики, атомно-молекулярного учения о строении вещества, элементов электродинамики и квантовой физики; овладение понятийным аппаратом и символическим языком физики;
- 4. Применять полученные знания для объяснения принципов действия важнейших

технических устройств, (работы) машин и механизмов, средств передвижения и связи, бытовых приборов, промышленных технологических процессов, решения практических задач повседневной жизни, обеспечения безопасности своей жизни, рационального природопользования и охраны окружающей среды; влияния технических устройств на окружающую среду;

осознание возможных причин техногенных и экологических катастроф.

Общая характеристика учебного предмета

Физика как наука о наиболее общих законах природы, выступая в качестве учебного предмета в школе, вносит существенный вклад в систему знаний об окружающем мире. Она раскрывает роль науки в экономическом и культурном развитии общества, способствует формированию современного научного мировоззрения. Для решения задач формирования основ научного мировоззрения, развития интеллектуальных способностей и познавательных интересов школьников в процессе изучения физики основное внимание следует уделять не передаче суммы

процессе изучения физики основное внимание следует уделять не передаче суммы готовых знаний, а знакомству с методами научного познания окружающего мира, постановке проблем, требующих от учащихся самостоятельной деятельности по их разрешению. Ознакомление школьников с методами научного познания предполагается

проводить при изучении всех разделов курса физики, а не только при изучении специального раздела «Физика и физические методы изучения природы».

Гуманитарное значение физики как составной части общего образования состоит в том, что она вооружает школьника научным методом познания, позволяющим получать объективные знания об окружающем мире.

Знание физических законов необходимо для изучения химии, биологии, физической географии, технологии, ОБЖ.

Курс физики в примерной программе основного общего образования структурируется на основе рассмотрения различных форм движения материи в порядке их усложнения: механические явления, тепловые явления, электромагнитные явления, квантовые явления. Физика в основной школе изучается на уровне рассмотрения явлений природы, знакомства с основными законами физики и применением этих законов в технике и повседневной жизни. Программа построена таким образом, что на основе экспериментального подхода теоретические сведения и тексты задач приобретают физический смысл; демонстрации и исследовательские проекты помогают образному восприятию науки.

Подведение итогов работы планируется через участие в выставках, конкурсах, олимпиадах, конференциях, фестивалях.

В соответствии с возрастными особенностями учащихся изучение материала программы определяет различные формы и методы проведения занятий:

- сбор информации с помощью различных источников,
- смысловое чтение и работа с текстом задачи,
- графическое и экспериментальное моделирование,
- экскурсии с целью отбора данных для составления задач;
- решение конструкторских задач и задач на проекты (проекты различных устройств, проекты методов определения каких-либо характеристик или свойств тела); подбор, составление и решение по интересам различных сюжетных задач: занимательных, экспериментальных с бытовым содержанием, с техническим и краеведческим содержанием;
- моделирование физического процесса или явления с помощью анимации;
- проектная деятельность.

Формы представления результатов обучающихся по освоению внеурочной деятельности:

- тематическая подборка задач различного уровня сложности с представлением разных методов решения в виде **текстового документа**, **презентации**.
- выставка проектов, презентаций;
- демонстрация эксперимента, качественной задачи с качественным (устным или в виде приложения, в том числе, презентацией) описанием процесса на занятии.
- научно-исследовательская (проектная) работа.

—Место предмета в учебном плане

Федеральный базисный учебный план для образовательных учреждений Российской Федерации отводит 35 часов для внеурочного изучения физики на ступени основного общего образования, в том числе в 7,8,9 классах по 35 учебных часов из расчета 1 учебный час в неделю. В примерной программе предусмотрен резерв свободного учебного времени в объеме 21 часа (10%) для реализации авторских подходов, использования разнообразных форм организации учебного процесса, внедрения современных методов обучения и педагогических технологий, учета местных условий, а

именно внеутрипредметный образовательный модуль «Решение нестандартных задач по физике»

Результаты изучения учебного предмета

Личностными результатами обучения физике в основной школе являются:

- 1. Сформированность познавательных интересов, интеллектуальных и творческих способностей учащихся;
- 2. Убежденность в возможности познания природы, в необходимости разумного использования достижений науки и технологий для дальнейшего развития человеческого общества, уважение к творцам науки и техники, отношение к физике как элементу общечеловеческой культуры;
- 3. Самостоятельность в приобретении новых знаний и практических умений;
- 4. Готовность к выбору жизненного пути в соответствии с собственными интересами и возможностями;
- 5. Формирование ценностных отношений друг к другу, учителю, авторам открытий и изобретений, результатам обучения.

Метапредметными результатами обучения физике в основной школе являются:

- 1. Овладение навыками самостоятельного приобретения новых знаний, организации учебной деятельности, постановки целей, планирования,
- 2. Понимание различий между исходными фактами и гипотезами для их объяснения, теоретическими моделями и реальными объектами, овладение универсальными учебными действиями на примерах гипотез для объяснения известных фактов и экспериментальной проверки выдвигаемых гипотез, разработки теоретических моделей процессов или явлений;
- 3. Формирование умений воспринимать, перерабатывать и предъявлять информацию в словесной, образной, символической формах, анализировать и перерабатывать полученную информацию в соответствии с поставленными задачами, выделять основное содержание прочитанного текста, находить в нем ответы на поставленные вопросы и излагать его;
- 4. Приобретение опыта самостоятельного поиска, анализа и отбора информации с использованием различных источников и новых информационных технологий для решения познавательных задач;
- 5. Развитие монологической и диалогической речи, умения выражать свои мысли и способности выслушивать собеседника, понимать его точку зрения, признавать право другого человека на иное мнение;
- 6. Освоение приемов действий в нестандартных ситуациях, овладение эвристическими методами решения проблем;
- 7. Формирование умений работать в группе с выполнением различных социальных ролей, представлять и отстаивать свои взгляды и убеждения, вести дискуссию.

Содержание курса внеурочной деятельности

- 1. Механические явления (6 часов) Механическое движение. Материальная точка как модель физического тела. Относительность механического движения. Система отсчета. Физические величины, необходимые для описания движения и взаимосвязь между ними (путь, перемещение, скорость, ускорение, время движения). Равномерное и равноускоренное прямолинейное движение. Равномерное движение по окружности. Первый закон Ньютона и инерция. Масса тела. Плотность вещества. Сила. Единицы силы.
- 2. Тепловые явления (3 часа) Строение вещества. Атомы и молекулы. Тепловое движение атомов и молекул. Диффузия в газах, жидкостях и твердых телах. *Броуновское движение*.

Взаимодействие (притяжение и отталкивание) молекул. Агрегатные состояния вещества. Различие в строении твердых тел, жидкостей и газов.

Тепловое равновесие. Температура. Связь температуры со скоростью хаотического движения частиц. Внутренняя энергия. Работа и теплопередача как способы изменения внутренней энергии тела. Теплопроводность. Конвекция. Излучение. Примеры теплопередачи в природе и технике. Количество теплоты. Удельная теплоемкость. Удельная теплота сгорания топлива. Закон сохранения и превращения энергии в механических и тепловых процессах. Плавление и отвердевание кристаллических тел. Удельная теплота плавления. Испарение и конденсация. Поглощение энергии при испарении жидкости и выделение ее при конденсации пара. Кипение.. Работа газа при расширении. Преобразования энергии в тепловых машинах (паровая турбина, двигатель внутреннего сгорания, реактивный двигатель). КПД тепловой машины. Экологические проблемы использования тепловых машин.

- 3. Кристаллы (2часа) Применение кристаллов, Выращивание кристаллов. Форма кристаллов. Образование кристаллов.
- 4. Давление (5 часов) Давление твердых тел. Единицы измерения давления. Способы изменения давления. Давление жидкостей и газов Закон Паскаля. Давление жидкости на дно и стенки сосуда. Сообщающиеся сосуды. Вес воздуха. Атмосферное давление. Измерение атмосферного давления. Опыт Торричелли. Барометр-анероид. Атмосферное давление на различных высотах. Гидравлические механизмы (пресс, насос).
- 5. Выталкивающее действие жидкости и газа (3 часа) Давление жидкости и газа на погруженное в них тело. Архимедова сила. Плавание тел и судов Воздухоплавание.
- 6. Световые и оптические явления (5 часов) Распространение света. Преломление и отражение света. Миражи, Радуга, Огни святого Эльма. Полярное сияние. Оптические приборы.
- 7. Электрические явления (4часа) Электризация физических тел. Взаимодействие заряженных тел. Два рода электрических зарядов. Делимость электрического заряда. Элементарный электрический заряд. Закон сохранения электрического заряда. Проводники, полупроводники и изоляторы электричества. Электроскоп. Электрическое поле как особый вид материи. Напряженность электрического поля. Действие электрического поля на электрические заряды. Конденсатор. Энергия электрического поля конденсатора.

Электрический ток. Источники электрического тока. Электрическая цепь и ее составные части. Направление и действия электрического тока. Носители электрических зарядов в

металлах. Сила тока. Электрическое напряжение. Электрическое сопротивление проводников. Единицы сопротивления.

- 8. Магнитные явления (3 часа) Магнитное поле. Индукция магнитного поля. Магнитное поле тока. Опыт Эрстеда. Магнитное поле постоянных магнитов. Магнитное поле Земли. Электромагнит.
- 9. Решение задач (2 часа) Решение задач из ОГЭ.